Featured Research
from universities, journals, and other organizations
Sexual reproduction has another benefit: It makes humans less prone to disease over time
Date:
February 16, 2015
Source:
University of Montreal
Summary:
For decades, theories on the genetic advantage of sexual reproduction had been put forward, but none had ever been proven in humans, until now. Researchers have just shown how humanity's predispositions to disease gradually decrease the more we mix our genetic material together. This discovery was finally made possible by the availability in recent years of repositories of biological samples and genetic data from different populations around the globe.
For decades, theories on the genetic advantage of sexual reproduction had been put forward, but none had ever been proven in humans, until now. Researchers at the University of Montreal and the Sainte-Justine University Hospital Research Centre in Montreal, Canada have just shown how humanity's predispositions to disease gradually decrease the more we mix our genetic material together. This discovery was finally made possible by the availability in recent years of repositories of biological samples and genetic data from different populations around the globe.
Related Articles
What we already knew
As humans procreate, generation after generation, the exchange of genetic material between man and woman causes our species to evolve little by little. Chromosomes from the mother and the father recombine to create the chromosomes of their child (chromosomes are the larger building blocks of genomes). Scientists have known for some time, however, that the parents' genomes don't mix together in a uniform way. Chromosomes recombine frequently in some segments of the genome, while recombination is less frequent in others. These segments of low-frequency recombination will eventually recombine like others do but it will take many, many generations.
The findings
More specifically, the team of Canadian researchers led by Dr. Philip Awadalla discovered the following: the segments of the human genome that don't recombine as often as others also tend to carry a significantly greater proportion of the more disease-enabling genetic mutations. Until chromosome recombination eventually occurs, these segments accumulate more and more bad mutations. In other words, as far as susceptibility to disease is concerned, our genetic material actually worsens, before it gets better. Thankfully, disease-enabling mutations are eventually shuffled off our genetic code through sexual reproduction. "But since these mutations rest on less dynamic segments of our genome, the process can potentially take many hundreds of generations," explains Dr. Awadalla.
Why these findings are significant
"This discovery gives us a better understanding of how we, as humans, become more or less at risk of developing or contracting diseases," says Dr. Awadalla. It also tells scientists more precisely where to look in the human genome to find disease-enabling mutations, he adds, which should speed up the discovery and identification of mutations associated with specific diseases. Researchers and health authorities will in turn be able to apply this new information to develop more effective treatments and prevention programs.
The science behind the findings
Dr. Awadalla and his team studied the sequenced genomes of hundreds of individuals from Canada's CARTaGENE genetic data repository and the multinational 1000 Genomes Project. They found that the proportion of mutations associated with disease was significantly higher in low recombining segments known as "coldspots" relative to highly recombining regions, and that the bad mutations in these coldspots were generally more damaging than the mutations in the highly recombining segments.
Through the 1000 Genomes and CARTaGENE programs, the team was able to compare this phenomenon across four present-day population basins: Africans, Asians, Europeans and Canadians of French descent. Each of these genetic groups exhibit the above behaviour to varying degrees. African individuals showed the smallest relative proportion of disease-associated mutations on their genome's coldspots, with Western Europeans showing the largest.
Story Source:
The above story is based on materials provided by University of Montreal. Note: Materials may be edited for content and length.
Journal Reference:
- Julie G Hussin, Alan Hodgkinson, Youssef Idaghdour, Jean-Christophe Grenier, Jean-Philippe Goulet, Elias Gbeha, Elodie Hip-Ki, Philip Awadalla. Recombination affects accumulation of damaging and disease-associated mutations in human populations. Nature Genetics, 2015; DOI: 10.1038/ng.3216
Cite This Page:
Share This
More From ScienceDaily
More Health & Medicine News
Monday, February 16, 2015
Featured Research
from universities, journals, and other organizations
In Rural India, Children Receive Wrong Treatments for Deadly Ailments
Feb. 16, 2015 — Few health care providers in rural India know the correct treatments for childhood diarrhea and pneumonia -- two leading killers of young children worldwide. But even when they do, they rarely... full story
- Rural India: Wrong Treatments for Deadly Ailments
- Anti-Inflammatory Mechanism of Dieting, Fasting
- Gene Regulatory Elements and Autoimmune Diseases
- Marvel Molecule: Hope for Inflammatory Diseases
- Hot Flashes for 7 Plus Years in Some Women
- Mindfulness Meditation Improves Sleep Quality
- Ovarian Cancer: New Therapeutic Strategy
- Microsurgery for Fertility in 'Sterile' Men
- Sexual Reproduction: Less Prone to Disease
- Moms Pass Traits to Offspring Via Bacteria's DNA
newer top stories | older top stories
Breaking News:
No comments:
Post a Comment
Please leave a comment-- or suggestions, particularly of topics and places you'd like to see covered