Translation from English

Thursday, October 2, 2014

Science Daily- Why Wetness Feels Wet

Featured Research

from universities, journals, and other organizations

Why wet feels wet: Understanding the illusion of wetness

Date:
October 1, 2014
Source:
American Physiological Society (APS)
Summary:
Though it seems simple, feeling that something is wet is quite a feat because our skin does not have receptors that sense wetness. UK researchers propose that wetness perception is intertwined with our ability to sense cold temperature and tactile sensations such as pressure and texture.

Researchers have developed the first neurophysiological model of how humans sense wetness.
Credit: © Valua Vitaly / Fotolia
Human sensitivity to wetness plays a role in many aspects of daily life. Whether feeling humidity, sweat or a damp towel, we often encounter stimuli that feel wet. Though it seems simple, feeling that something is wet is quite a feat because our skin does not have receptors that sense wetness. The concept of wetness, in fact, may be more of a "perceptual illusion" that our brain evokes based on our prior experiences with stimuli that we have learned are wet.

So how would a person know if he has sat on a wet seat or walked through a puddle? Researchers at Loughborough University and Oxylane Research proposed that wetness perception is intertwined with our ability to sense cold temperature and tactile sensations such as pressure and texture. They also observed the role of A-nerve fibers -- sensory nerves that carry temperature and tactile information from the skin to the brain -- and the effect of reduced nerve activity on wetness perception. Lastly, they hypothesized that because hairy skin is more sensitive to thermal stimuli, it would be more perceptive to wetness than glabrous skin (e.g., palms of the hands, soles of the feet), which is more sensitive to tactile stimuli.

Davide Filingeri et al. exposed 13 healthy male college students to warm, neutral and cold wet stimuli. They tested sites on the subjects' forearms (hairy skin) and fingertips (glabrous skin). The researchers also performed the wet stimulus test with and without a nerve block. The nerve block was achieved by using an inflatable compression (blood pressure) cuff to attain enough pressure to dampen A-nerve sensitivity.

They found that wet perception increased as temperature decreased, meaning subjects were much more likely to sense cold wet stimuli than warm or neutral wet stimuli. The research team also found that the subjects were less sensitive to wetness when the A-nerve activity was blocked and that hairy skin is more sensitive to wetness than glabrous skin. These results contribute to the understanding of how humans interpret wetness and present a new model for how the brain processes this sensation.

"Based on a concept of perceptual learning and Bayesian perceptual inference, we developed the first neurophysiological model of cutaneous wetness sensitivity centered on the multisensory integration of cold-sensitive and mechanosensitive skin afferents," the research team wrote. "Our results provide evidence for the existence of a specific information processing model that underpins the neural representation of a typical wet stimulus."
The article "Whys wet feels wet? A neurophysiological model of human cutaneous wetness sensitivity" is published in the Journal of Neurophysiology. It is highlighted as one of this month's "best of the best" as part of the American Physiological Society's APSselect program.

Story Source:
The above story is based on materials provided by American Physiological Society (APS). Note: Materials may be edited for content and length.

Journal Reference:
  1. D. Filingeri, D. Fournet, S. Hodder, G. Havenith. Why wet feels wet? A neurophysiological model of human cutaneous wetness sensitivity. Journal of Neurophysiology, 2014; 112 (6): 1457 DOI: 10.1152/jn.00120.2014

Cite This Page:
American Physiological Society (APS). "Why wet feels wet: Understanding the illusion of wetness." ScienceDaily. ScienceDaily, 1 October 2014. .

More Mind & Brain News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations

No comments:

Post a Comment

Please leave a comment-- or suggestions, particularly of topics and places you'd like to see covered