Wednesday, November 4, 2015

Sci American- Fast Test for Stroke Damage

Chemical Test Quickly Finds Cognitive Damage In Stroke Patients

Testing for three brain chemicals reveals impairment faster than standard neuropsychological exams


CT-scan of a brain with a right MCA infarct.

Lucien Monfils/Wikimedia CommonsCC BY-SA 3.0
A stroke happens when blood flow to the brain is interrupted and brain cells starve of oxygen. Aftereffects include muscle weakness and altered senses. In many cases, strokes also affect the way a patient thinks or processes information.
Quickly identifying the effects of a stroke helps doctors to tailor rehabilitation programs to the needs of a patient. Currently, structural neuroimaging and neuropsychological tests assess cognitive damage, but these take time and require the patient to be involved and compliant.
Now, a team led by Weizhong Wang and Xiaoying Bi from the Second Military Medical University in Shanghai has analysed metabolic changes following a stroke. The researchers were particularly interested in identifying changes related to post-stroke cognitive impairment. Bi explains that these changes may be ‘caused by inflammation, neurotoxicity or oxidative stress’ because of the stroke.
The team used paired ultra-high performance liquid chromatography and Q-TOF mass spectrometry to study serum samples from a control group, a post-stroke cognitively impaired group and a post-stroke non-cognitively impaired group of patients. Multivariate data analysis of the data set highlighted the different metabolic profiles of the groups and identified a wide range of metabolic changes.
To create a practical test, the team then used a regression model to pare down the metabolites to three that were simple to check for: glutamine—an amino acid; kynurenine—a metabolite of tryptophan; and lysoPC(18:2)—a lysophospholipid. These biomarkers can rapidly identify post-stroke cognitive impairment without actively involving the patient in the testing.
Peng Song, a specialist in neuro-analytical chemistry, from the Eastman Chemical Company in the US says the research signals the coming age of clinical metabolomics. ‘The finding paves the way for a better understanding of the molecular mechanisms and eventually, more effective treatment,’ he adds.
This article is reproduced with permission from Chemistry World. The article was first published on November 2, 2015.
Share this Article:

Comments

You must sign in or register as a ScientificAmerican.com member to submit a comment.
risk free title graphic
YES! Send me a free issue of Scientific American with no obligation to continue the subscription. If I like it, I will be billed for the one-year subscription.
cover imageSubscribe Now

No comments:

Post a Comment

Please leave a comment-- or suggestions, particularly of topics and places you'd like to see covered