Featured Research
from universities, journals, and other organizations
Natural variation: Warm North Atlantic Ocean promotes extreme winters in US and Europe
Date:
April 1, 2014
Source:
Institute of Physics
Summary:
The
extreme cold weather observed across Europe and the east coast of the
US in recent winters could be partly down to natural, long-term
variations in sea surface temperatures, according to a new study.
Researchers have shown that a phenomenon known as the Atlantic
Multidecadal Oscillation (AMO) -- a natural pattern of variation in
North Atlantic sea surface temperatures that switches between a positive
and negative phase every 60-70 years -- can affect an atmospheric
circulation pattern, known as the North Atlantic Oscillation (NAO), that
influences the temperature and precipitation over the Northern
Hemisphere in winter.
The
extreme cold weather observed across Europe and the east coast of the
US in recent winters could be partly down to natural, long-term
variations in sea surface temperatures, according to a new study
published today.
Researchers
from the University of California Irvine have shown that a phenomenon
known as the Atlantic Multidecadal Oscillation (AMO) -- a natural
pattern of variation in North Atlantic sea surface temperatures that
switches between a positive and negative phase every 60-70 years -- can
affect an atmospheric circulation pattern, known as the North Atlantic
Oscillation (NAO), that influences the temperature and precipitation
over the Northern Hemisphere in winter.
When the AMO is in its positive phase and the sea surface temperatures are warmer, the study has shown that the main effect in winter is to promote the negative phase of the NAO which leads to "blocking" episodes over the North Atlantic sector, allowing cold weather systems to exist over the eastern US and Europe.
The results have been published today, Wednesday 2 April, in IOP Publishing's journal Environmental Research Letters.
To arrive at their results, the researchers combined observations from the past century with climate simulations of the atmospheric response to the AMO.
According to their observations, sea surface temperatures in the Atlantic can be up to 1.5 °C warmer in the Gulf Stream region during the positive phase of the AMO compared to the negative, colder phase. The climate simulations suggest that these specific anomalies in sea surface temperatures can play a predominant role in promoting the change in the NAO.
Lead authors of the study Yannick Peings and Gudrun Magnusdottir said: "Our results indicate that the main effect of the positive AMO in winter is to promote the occurrence of the negative phase of the NAO. A negative NAO in winter usually goes hand-in-hand with cold weather in the eastern US and north-western Europe."
The observations also suggest that it takes around 10-15 years before the positive phase of AMO has any significant effect on the NAO. The reason for this lag is unknown; however, an explanation might be that AMO phases take time to develop fully.
As the AMO has been in a positive phase since the early 1990s, it may have contributed to the extreme winters that both the US and Europe have experienced in recent years.
The researchers warn, however, that the future evolution of the AMO remains uncertain, with many factors potentially affecting how it interacts with atmospheric circulation patterns, such as Arctic sea ice loss, changes in solar radiation, volcanic eruptions and concentrations of greenhouse gases in the atmosphere.
The AMO also shows strong variability from one year to the next in addition to the changes seen every 60 - 70 years, which makes it difficult to attribute specific extreme winters to the AMO's effects.
Responding to the extreme weather that gripped the eastern coast of the US this winter, Yannick Peings continued: "Unlike the 2012/2013 winter, this winter had rather low values of the AMO index and the pattern of sea surface temperature anomalies was not consistent with the typical positive AMO pattern. Moreover, the NAO was mostly positive with a relatively mild winter over Europe."
"Therefore it is unlikely that the positive AMO played a defining role on the east coast of the US, although further work is necessary to answer this question. Such an event is consistent with the large internal variability of the atmosphere, and other external forcings may have played a role.
"Our future studies will look to compare the role of the AMO compared to Arctic sea ice anomalies, which have also been shown to affect atmospheric circulation patterns and promote colder, more extreme winters."
When the AMO is in its positive phase and the sea surface temperatures are warmer, the study has shown that the main effect in winter is to promote the negative phase of the NAO which leads to "blocking" episodes over the North Atlantic sector, allowing cold weather systems to exist over the eastern US and Europe.
The results have been published today, Wednesday 2 April, in IOP Publishing's journal Environmental Research Letters.
To arrive at their results, the researchers combined observations from the past century with climate simulations of the atmospheric response to the AMO.
According to their observations, sea surface temperatures in the Atlantic can be up to 1.5 °C warmer in the Gulf Stream region during the positive phase of the AMO compared to the negative, colder phase. The climate simulations suggest that these specific anomalies in sea surface temperatures can play a predominant role in promoting the change in the NAO.
Lead authors of the study Yannick Peings and Gudrun Magnusdottir said: "Our results indicate that the main effect of the positive AMO in winter is to promote the occurrence of the negative phase of the NAO. A negative NAO in winter usually goes hand-in-hand with cold weather in the eastern US and north-western Europe."
The observations also suggest that it takes around 10-15 years before the positive phase of AMO has any significant effect on the NAO. The reason for this lag is unknown; however, an explanation might be that AMO phases take time to develop fully.
As the AMO has been in a positive phase since the early 1990s, it may have contributed to the extreme winters that both the US and Europe have experienced in recent years.
The researchers warn, however, that the future evolution of the AMO remains uncertain, with many factors potentially affecting how it interacts with atmospheric circulation patterns, such as Arctic sea ice loss, changes in solar radiation, volcanic eruptions and concentrations of greenhouse gases in the atmosphere.
The AMO also shows strong variability from one year to the next in addition to the changes seen every 60 - 70 years, which makes it difficult to attribute specific extreme winters to the AMO's effects.
Responding to the extreme weather that gripped the eastern coast of the US this winter, Yannick Peings continued: "Unlike the 2012/2013 winter, this winter had rather low values of the AMO index and the pattern of sea surface temperature anomalies was not consistent with the typical positive AMO pattern. Moreover, the NAO was mostly positive with a relatively mild winter over Europe."
"Therefore it is unlikely that the positive AMO played a defining role on the east coast of the US, although further work is necessary to answer this question. Such an event is consistent with the large internal variability of the atmosphere, and other external forcings may have played a role.
"Our future studies will look to compare the role of the AMO compared to Arctic sea ice anomalies, which have also been shown to affect atmospheric circulation patterns and promote colder, more extreme winters."
Story Source:
The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.
The above story is based on materials provided by Institute of Physics. Note: Materials may be edited for content and length.
Journal Reference:
- Yannick Peings, Gudrun Magnusdottir. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environmental Research Letters, 2014; 9 (3): 034018 DOI: 10.1088/1748-9326/9/3/034018
Cite This Page:
No comments:
Post a Comment
Please leave a comment-- or suggestions, particularly of topics and places you'd like to see covered